Our lab is interested in elucidating the functional neuronal circuits that control fundamental animal behaviors such as feeding and movement. Our current goal is to provide a complete connectivity map of the feeding circuit in Drosophila larvae at both single cell and synaptic resolution. This includes all muscles, motor neurons, sensory organs, interneurons and modulatory neurons. We aim to provide a neuronal substrate and conceptual framework within which innate and flexible behaviors can be generated at network level.
Discover our homepage here.
Methods
- Connectomic analysis of whole CNS and whole animal serial section EM volumes
- electrophysiology, optogenetics
- functional imaging
- molecular genetics
- ex-vivo physiological and whole animal behavioral analysis
5 selected papers
Hückesfeld, S., Schlegel, P., Miroschnikow, A., Schoofs, A., Zinke, I., Haubrich, A. N., Schneider-Mizell, C. M., Truman, J. W., Fetter, R. D., Cardona, A., & Pankratz, M. J. (2021). Unveiling the sensory and interneuronal pathways of the neuroendocrine connectome in Drosophila. eLife, 10, e65745. https://doi.org/10.7554/eLife.65745
Miroschnikow, A., Schlegel, P., & Pankratz, M. J. (2020). Making Feeding Decisions in the Drosophila Nervous System. Current biology : CB, 30(14), R831–R840. https://doi.org/10.1016/j.cub.2020.06.036
Miroschnikow, A., Schlegel, P., Schoofs, A., Hueckesfeld, S., Li, F., Schneider-Mizell, C. M., Fetter, R. D., Truman, J. W., Cardona, A., & Pankratz, M. J. (2018). Convergence of monosynaptic and polysynaptic sensory paths onto common motor outputs in a Drosophila feeding connectome. eLife, 7, e40247. https://doi.org/10.7554/eLife.40247
Schlegel, P., Texada, M. J., Miroschnikow, A., Schoofs, A., Hückesfeld, S., Peters, M., Schneider-Mizell, C. M., Lacin, H., Li, F., Fetter, R. D., Truman, J. W., Cardona, A., & Pankratz, M. J. (2016). Synaptic transmission parallels neuromodulation in a central food-intake circuit. eLife, 5, e16799. https://doi.org/10.7554/eLife.16799
Hückesfeld, S., Peters, M., & Pankratz, M. J. (2016). Central relay of bitter taste to the protocerebrum by peptidergic interneurons in the Drosophila brain. Nature communications, 7, 12796. https://doi.org/10.1038/ncomms12796